

Efficienza Energetica negli Impianti Elettrici

Dott. Ing. Pietro Antonio SCARPINO

Docente di Macchine Elettriche alla Scuola di Ingegneria - Università di Firenze Libero Professionista

Direttiva Europea 2010/31/UE

- > L'indicatore di prestazione energetica deve essere presente già nell'offerta economica
- > Tutti gli edifici nuovi dovranno essere a bassissimo consumo a partire dal 2020
- Deve essere obbligatorio un sistema di verifica dei certificati energetici
- Obbligatori requisiti di prestazione energetica anche per impianti e componenti

Progettazione di Efficienza Energetica degli Impianti Elettrici "Ecoprogettazione"

UNI EN 15232 (ottobre 2007): Incidenza dell'automazione, della regolazione e della gestione tecnica degli edifici

UNI EN 15193 (marzo 2008): Requisiti energetici per l'illuminazione

Progettazione di Efficienza Energetica degli Impianti Elettrici "Ecoprogettazione"

Energia = Potenza x tempo

il Risparmio Energetico deve essere un parametro progettuale

Strutturazione dell'impianto:

- 1) Ottimizzazione del dimensionamento;
- 2) Uso di apparecchiatura e componenti ad alta efficienza energetica
- Esercizio dell'impianto
 - 1) Controlli manuali e automatici (BAC);
 - 2) Gestione Tecnica TBM;

Norma UNI EN 15232

NORMA EUROPEA

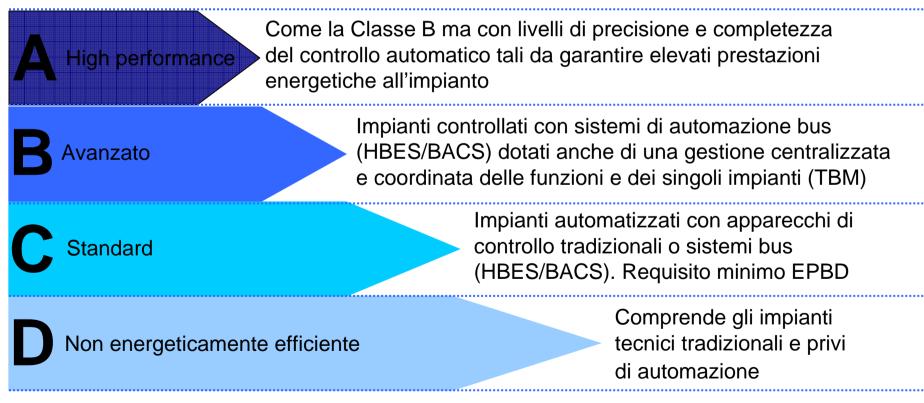
Prestazione energetica degli edifici Incidenza dell'automazione, della regolazione e della gestione tecnica degli edifici

UNI EN 15232

FEBBRAIO 2012

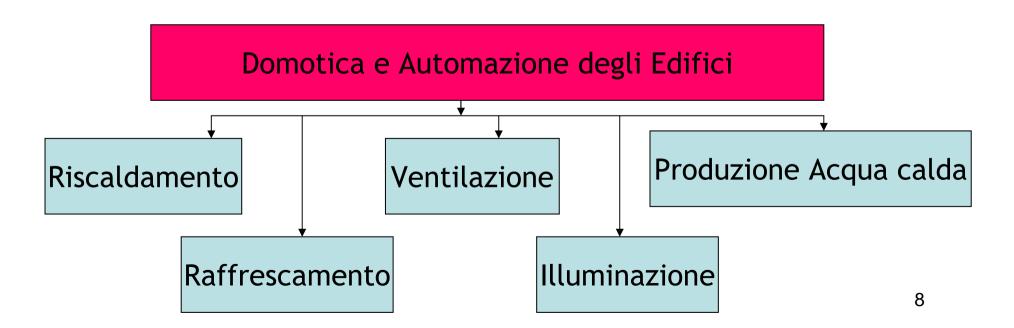
Energy performance of buildings Impact of Building Automation, Controls and Building Management

La norma specifica:


- una lista strutturata delle funzioni di regolazione, automazione e gestione tecnica degli edifici che hanno un'incidenza sulla prestazione energetica degli stessi;
- un metodo per definire i requisiti minimi da applicare per la regolazione, l'automazione e la gestione tecnica degli edifici di diversa complessità;
- un metodo semplificato per arrivare ad una prima stima dell'impatto di queste funzioni su edifici rappresentativi;
- i metodi dettagliati per valutare l'incidenza di queste funzioni su un determinato edificio.

Progettazione di Efficienza Energetica degli Impianti Elettrici "Ecoprogettazione"

La norma UNI EN 15232 definisce una lista strutturata delle funzioni di regolazione e automazione BAC e gestione tecnica degli edifici TBM che hanno un'incidenza sulla prestazione energetica degli stessi.


Classi di Efficienza Energetica – UNI EN 15232

 La norma EN15232 definisce quattro diverse classi di efficienza energetica per la classificazione dei sistemi di automazione di edificio, valide sia per le applicazioni di tipo residenziale sia per le applicazioni di tipo non-residenziale

Riduzione dei consumi negli edifici

La Norma Europea UNI EN15232 "Prestazione energetica degli edifici - Incidenza dell'automazione, della regolazione e della gestione tecnica degli edifici" pone in evidenza come l'inserimento negli edifici (residenziale e terziario) di Sistemi di Controllo ed Automazione comporta una riduzione dei consumi energetici in generale e principalmente dei più importanti:

Norma UNI EN 15232: Valutazione del fabbisogno energetico di un edificio

- Metodi dettagliati:
 - Metodo diretto;
 - Metodo basato sul modo di funzionamento;
 - Metodo basato sul tempo di funzionamento;
 - Metodo basato sulla temperatura del locale;
 - Metodo dei coefficienti di correzione;
 - Metodo dei fattori di efficienza (BAC efficency factors)

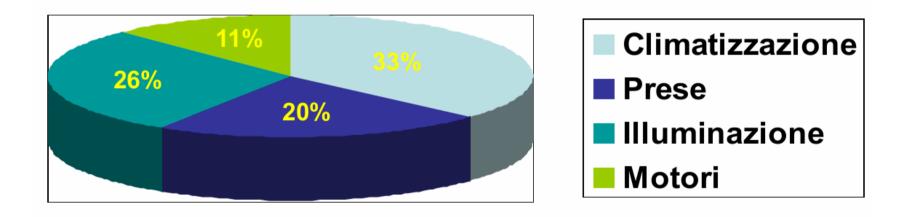
L'efficienza di gestione dei sistemi tecnologici di edificio si traduce in risparmio energetico e miglioramento dell'ambiente

	Riscald	damento / Raf	f <mark>rescamento ir</mark>	Edifici no	n Residenz	iali		
	Classi	e Fattori di effic	ienza BAC/HBI	ES				
Tipologia Edificio /					Risparmio adottando		e Classi B e	A al posto
Locale	D	С	В	Α		di C	o D	
	Senza	Automazione	Automazione	Alta	Risparmio	Risparmio	Risparmio	Risparmio
	automazione	Standard	Avanzata	Efficienza	B/C	B/D	A/C	A/D
Uffici	1,51	1,00	0,80	0,70	20%	47%	30%	54%
Sale di lettura	1,24	1,00	0,75	0,50	25%	40%	50%	60%
Scuole	1,20	1,00	0,88	0,80	12%	27%	20%	33%
Ospedali	1,31	1,00	0,91	0,86	9%	31%	14%	34%
Hotel	1,31	1,00	0,75	0,68	25%	43%	32%	48%
Ristoranti	1,23	1,00	0,77	0,68	23%	37%	32%	45%
Negozi / Grossisti	1,56	1,00	0,73	0,60	27%	53%	40%	62%
	Risc	aldamento / R	affrescamento	in Edifici	<mark>Residenzia</mark>	li		
Case monofamiliari								
Appartamenti in	1,10	1,00	0,88	0,81	12%	20%	19%	26%
condominio	dominio		0,00	0,01	1270	2070	1070	2070
Atri residenziali								

Fattori di efficienza sul consumo di energia elettrica negli edifici

		Energia Elettr	ica in Edifici	<mark>non reside</mark>	enziali					
	Classi	e Fattori di effic	cienza BAC/HE	BES						
			Risparmio applicando le Classi B e A al							
Tipologia Edificio /	D	С	В	Α		posto di C o D				
Locale	Senza automazione	Automazione Standard	Automazione Avanzata	Alta Efficienza	Risparmio B/C	Risparmio B/D	Risparmio A/C	Risparmio A/D		
Uffici	1,10	1,00	0,80	0,70	20%	27%	30%	36%		
Sale di lettura	1,06	1,00	0,75	0,50	25%	29%	50%	53%		
Scuole	1,07	1,00	0,88	0,80	12%	18%	20%	25%		
Ospedali	1,05	1,00	0,91	0,86	9%	13%	14%	18%		
Hotel	1,07	1,00	0,85	0,68	15%	21%	32%	(36%)		
Ristoranti	1,04	1,00	0,77	0,68	23%	26%	32%	35%		
Negozi / Grossisti	1,08	1,00	0,73	0,60	27%	32%	40%	44%		
		Energia Ele	ttrica in Edific	<mark>ci Residen</mark>	ziali					
Case monofamiliari Appartamenti in condominio Atri residenziali	1,08	1,00	0,93	0,92	7%	14%	8%	15%		

La colonna denominata:


Risparmio B/C indica il risparmio percentuale ottenuto adottando la Classe B invece della C Risparmio B/D indica il risparmio percentuale ottenuto adottando la Classe B invece della D Risparmio A/C indica il risparmio percentuale ottenuto adottando la Classe A invece della C Risparmio A/D indica il risparmio percentuale ottenuto adottando la Classe A invece della D

Condizioni al contorno per Uffici

	ff: a:	Classe di efficienza BAC							
U	ffici	D	С	В	Α				
Riscaldamento	T set-point	22,5 ℃	22/15 ℃	21/15 ℃	21/15 ℃				
Riscaluamento	Tempo	00-24	05-21	06-20	06-19				
Condizionamento	T set-point	22,5 ℃	23 ℃	23℃	T=f(T _{amb})				
Condizionamento	Tempo	00-24	05-21	06-20	06-19				
Illuminazione	Potenza	13 W/m ²	13 W/m ²	13 W/m ²	13 W/m ²				
illuminazione	Tempo	07-18	07-18	07-18	07-18				
A	Persone	13,3 m ² /p	13,3 m ² /p	13,3 m ² /p	13,3 m ² /p				
Apporti	Attrezzature	10 W/m ²	10 W/m ²	10 W/m ²	10 W/m ²				
Ventilazione	Cambio aria	-	-	-	-				
Solare	Fattore ombreggiamento	0,3 manuale	0,5 manuale	0,7 (200W/m ²⁾	0,7 (130W/m ²⁾				
Profilo utilizzazione	Giorni lavorativi/weekend	5/2	5/2	5/2	5/2				

Consumi Energetici anno 2012

L'illuminazione rappresenta oltre un quarto dei consumi

Pari a circa 24,6 TWh

Norma UNI EN 15193

NORMA EUROPEA

Prestazione energetica degli edifici Requisiti energetici per illuminazione

UNI EN 15193

MARZO 2008

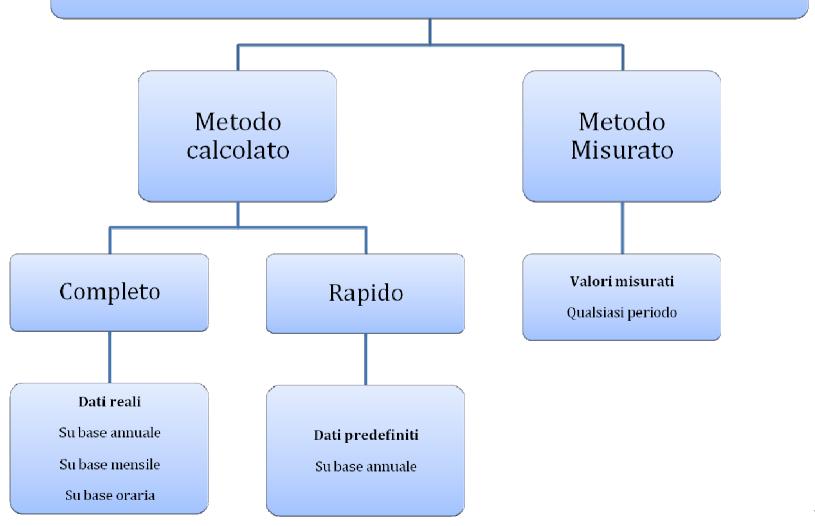
Energy performance of buildings
Energy requirements for lighting

Versione italiana del febbraio 2011

La norma specifica la metodologia di calcolo del consumo energetico degli impianti di illuminazione in interni di edifici e definisce un indicatore numerico dei requisiti energetici per l'illuminazione da utilizzare per la certificazione energetica. Essa può essere usata sia per gli edifici esistenti, sia per gli edifici nuovi o in ristrutturazione.

La norma fornisce anche i riferimenti su cui basare i valori limiti di energia previsti per l'illuminazione. Inoltre fornisce una metodologia per il calcolo dell'energia istantanea consumata per l'illuminazione per la stima dell'efficienza energetica globale dell'edificio. Sono escluse le potenze parassite non incluse negli apparecchi.

Norma UNI EN 15193


- •La norma specifica la metodologia di calcolo del consumo energetico degli impianti di illuminazione in interni di edifici e definisce un indicatore numerico dei requisiti energetici (LENI) per l'illuminazione da utilizzare per la certificazione energetica.
- •Essa può essere usata sia per gli edifici esistenti, sia per gli edifici nuovi o in ristrutturazione
- •La norma fornisce anche i riferimenti su cui basare i valori limite di energia previsti per l'illuminazione
- •Inoltre fornisce una metodologia per il calcolo dell'energia istantanea consumata per l'illuminazione per la stima dell'efficienza energetica globale dell'edificio.

Controllo automatizzato dell'impianto di illuminazione – UNI EN 15193

Tiene conto essenzialmente di tre fattori:

- tempo (periodo della giornata);
- livello di occupazione dei locali;
- livello di illuminamento richiesto.

Valutazione del fabbisogno energetico totale per l'illuminazione artificiale secondo la UNI EN 15193

Norma UNI EN 15193

LENI

Lighting Energy Numeric Indicator

LENI = W / A [kWh /
$$m^2$$
anno]

dove:

W = Energia totale annuale per l'illuminazione [kWh / anno]

A = Area utile totale dell'edificio [m²].

$$W = W_L + W_P$$
 [kWh/anno]

dove:

W_L = Energia luminosa consumata in un anno(compresi gli alimentatori) [kWh]

W_P = Energia parassita dissipata in un anno dai dispositivi di controllo dei sistemi di regolazione e caricamento delle lampade di sicurezza [kWh].

W_I = Energia Luminosa Consumata in un anno

$$W_L = \frac{P_n F_c F_0 (t_D F_D + t_N)}{1000}$$
 [kWh/anno]

dove:

- P_n = Potenza installata di tutti gli apparecchi illuminanti della zona compresi gli alimentatori [kWh];
- F_c = "Fattore d'illuminamento costante" tiene conto di un controllo che regola la max potenza erogabile per evitare che con lampade nuove si determini un illuminamento superiore al necessario;
- F₀ = "Fattore di dipendenza dall'occupazione" tiene conto di un controllo luce sensibile alla occupazione dei locali;
- F_D = "Fattore di dipendenza dalla luce diurna" che tiene conto di un controllo luce sensibile alla presenza di luce diurna;
- t_D = Tempo di funzionamento diurno [h];
- t_N = Tempo di funzionamento notturno [h].

Profili di Occupazione dei Locali

Fattore di Illuminamento Costante [Fc]

Rapporto tra la potenza media assorbita nell'intervallo di tempo di un ciclo di manutenzione e la potenza installata per alimentare gli apparecchi di illuminazione.

$$W_L = \frac{P_n F_c F_0 (t_D F_D + t_N)}{1000}$$
 [kWh / anno]

$$F_{\rm C} = \frac{1 + MF}{2}$$

MF = fattore di decadimento del flusso luminoso delle lampade

Il risparmio che si può ottenere utilizzando il controllo per l'illuminamento costante è pari a 1- Fc riferito a tutto il tempo di esercizio t_D + t_N ; tale risparmio secondo quanto proposto dalla norma UNI EN 15193 risulta pari al 10%

Fattore di dipendenza dall'Occupazione [Fo]

$$W_L = \frac{P_n F_c F_0 (t_D F_D + t_N)}{1000}$$
 [kWh/anno]

oppure in gruppi per aree maggiori di 30 m²
$$F_{0} = 1 - F_{A} \frac{1 - F_{OC}}{0.2} \qquad \text{se } 0.0 \le F_{A} \le 0.2$$

$$F_{0} = F_{OC} + 0.2 - F_{A} \qquad \text{se } 0.2 \le F_{A} \le 0.9$$

$$F_{0} = (7 - 10F_{OC})(F_{A} - 1) \qquad \text{se } 0.9 \le F_{A} \le 1.0$$

$$F_0 = F_{OC} + 0.2 - F_A$$
 se $0.2 \le F_A \le 0.9$

$$F_0 = (7 - 10F_{OC})(F_A - 1)$$
 se $0.9 \le F_A \le 1.0$

Il risparmio ottenibile con il controllo di presenza è pari a 1 - F₀ riferito a tutto il tempo di esercizio t_D + t_N

Fattore di Presenza [F_A]

$$F_0 = 1 - F_A = \frac{1 - F_{OC}}{0.2}$$
 se $0.0 \le F_A \le 0.2$
 $F_0 = F_{OC} + 0.2 - F_A$ se $0.2 \le F_A \le 0.9$
 $F_0 = (7 - 10F_{OC})(F_A - 1)$ se $0.9 \le F_A \le 1.0$

$$F_0 = F_{OC} + 0.2 - F_A$$
 se $0.2 \le F_A \le 0.5$

$$_{0} = (7 - 10F_{OC})(F_{A} - 1)$$
 se $0.9 \le F_{A} \le 1.0$

Tabella	3 - Valori di F _A per alcune tipologie di locali in un edificio uffic	i a sama sa
Tipo di edificio	Tipo di stanza	F _A
	Ufficio 1 persona	0,4
	Ufficio 2-6 persone	0,3
	Open space con densità > 6 persone/30m²	0
	Open space con densità > 6 persone/10m ²	0,2
	Corridoi	0,4
	Entrate, hall	0
Uffici	Showroom	0,6
	Bathroom	0,9
	Rest room	0,5
	Storage room / CED	0,9
	Locali tecnologici	0,98
	Fotocopie	0,5
	Sale conferenze	0,5
-	Archivi	0,98

Fattore di Occupazione [Foc]

Tabella 2 - Valori di F _{0C} in funzione del tipo di con	Tabella 2 - Valori di F _{0C} in funzione del tipo di controllo							
Sistemi di controllo che non presentano un sensore di occupazione	F _{oc}							
accensione e spegnimento manuale	1,00							
accensione e spegnimento manuale con sistema generale automatico di spegnimento								
Sistemi di controllo che presentano un sensore di occupazione	F _{oc}							
accensione automatica e spegnimento in dimming	0,95							
accensione e spegnimento automatico	0,90							
accensione manuale e spegnimento in dimming								
accensione manuale e spegnimento automatico	0,80							

Norma UNI EN 15193

Tabella 4 - Tabella riepilogativa del fattore	F ₀ in i	funzio	ne de	l tipo	di con	trollo	e del	fattor	e di as	senza	
Fattore di assenza F _A	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Fattore di occupazione F ₀ per sistemi di controllo che non presentano un sensore di occupazione											
accensione e spegnimento manuale (Man ON/OFF in figura 2)	1,00	1,00	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,00
accensione e spegnimento manuale con sistema generale automatico di spegnimento (Man ON+OFF gen in figura 2)	1,00	0,97	0,95	0,85	0,75	0,65	0,55	0,45	0,35	0,25	0,00
Fattore di occupazione F ₀ per sistemi di controllo che presentano un sensore di occupazione											
accensione automatica e spegnimento in dimming	1,00	0,97	0,95	0,85	0,75	0,65	0,55	0,45	0,35	0,25	0,00
accensione e spegnimento automatico (Auto ON/OFF in figura 2)	1,00	0,95	0,90	0,80	0,70	0,60	0,50	0,50	0,30	0,20	0,00
accensione manuale e spegnimento in dimming	1,00	0,95	0,90	0,80	0,70	0,60	0,50	0,50	0,30	0,20	0,00
accensione manuale e spegnimento automatico (Man ON Auto OFF in figura 2)	1,00	0,90	0,80	0,70	0,60	0,50	0,50	0,30	0,20	0,10	0,00

Tempi di funzionamento diurno e notturno

Tabella 1 - Ore diurne t_D e notturne t_N di riferimento di funzionamento delle attività per alcune tipologie di edifici, utili per il calcolo dell'indice LENI										
Tipo di edificio	Ore di funzionamento delle attività all'interno dell'edificio per anno Valori di riferimento									
	t_D	t_N	$t_D + t_N$							
Uffici	2250	250	2500							
Scuole ed università	1800	200	2000							
Ospedali	3000	2000	5000							
Hotel	3000	2000	5000							
Ristoranti	1250	1250	2500							
Sport	2000	2000	4000							
Commerciale	3000	2000	5000							
Produzione industriale	2500	1500	, 4000							

Stima della predisposizione del locale a recepire la luce diurna

- D_C = fattore di luce diurna, stima della predisposizione del locale a recepire luce diurna;
- D = fattore di classificazione luce diurna che tiene conto della finestratura.

Tabella 7 - Disponibilità della luce diurna								
D _C	D	Penetrazione di luce naturale						
$D_{\rm C} > = 6\%$	D > = 3%	Forte						
$6\% > D_C > = 4\%$	3% > D > = 2%	Media						
$4\% > D_C > = 2\%$	2% > D > = 1%	Debole						
D _C < 2%	D < 1%	Nessuna						

$$D_{\rm C} = (4,13 + 20I_{\rm T} - 1,36I_{\rm DE}) I_{\rm 0}$$

dove:

- I_T = A_C / A_D indice di trasparenza; rapporto tra area lorda delle aperture della facciata A_C e area del piano di lavoro orizzontale che riceve la luce diurna A_D;
- I_{DE} = a_D / (h_{Li} h_{Ta}) indice di profondità pari al rapporto tra profondità della zona investita da luce diurna e altezza della sommità della finestra rispetto al piano di lavoro;
- I₀ = esprime l'effetto di ostruzione che limita l'ingresso della luce diurna (in assenza di ostruzioni I₀ = 1)

Fattore di classificazione della luce diurna che tiene conto della finestratura [D]

$$I_0 = I_{0,0B} I_{0,0V} I_{0,0VF} I_{0,0CA} I_{0,0GDF}$$

dove:

I_{0.0B} = fattore per ostruzioni lineari

 $I_{0,0V}$ = fattore per sporgenze

I_{0.0VF} = fattore per alette verticali

 $I_{0.0CA}$ = fattore per cortili

I_{0.0GDF} = fattore per doppie facciate vetrate

$$D = D_C \tau k_1 k_2 k_3$$

dove:

au = coefficiente emisferico di trasmissione diretta del sistema vetrato, Tabella 8

k1= fattore di telaio della finestra, tipico =0,7

k2= fattore di pulizia del vetro. tipico =0,8

k3= fattore di incidenza della luce, tipico =0,85

UNI EN 15193

Tabella 8 - Coefficiente emisferico τ _{D65,SNA} di trasmissione diretta del sistema vetrato									
Tipo di finestratura	Coefficiente emisferico di trasmissione diretta del sistema vetrato τ (coefficiente di trasmissione di luce visibile, visual transmittance VT)	Coefficiente di trasmissione del calore solare (solar heat gain SHSG)							
Vetro semplice chiaro	0,90	0,86							
Vetro semplice schermo solare	0,68	0,73							
Vetro doppio chiaro	0,81	0,76							
Vetro doppio schermo solare	0,61	0,63							
Vetro doppio a performance controllata (argon-kripton filled)	0,75 0,80 0,70	0,70 0,60 0,40 SHSG Coefficients trasmissione							
Vetro triplo a performance controllata (argon kripton filled)	0,65 0,56	0,50 0,33 del calore solare 7, VT Coefficiente of trasmissione luce visibile							

Fattore di dipendenza dalla luce diurna [F_D]

$$F_{D} = 1 - (F_{D,S} F_{D,C})$$

dove:

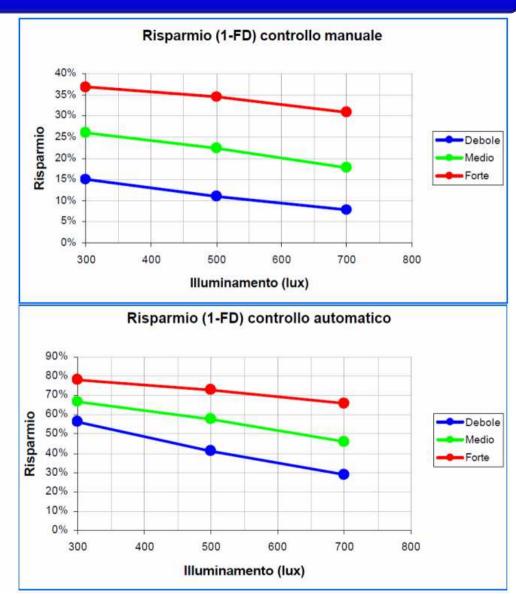
 F_{D,S} = Fattore di disponibilità luce diurna;
 F_{D,C} = Fattore di controllo di luce diurna (valori di FD,C in Tabella 5).

$$F_{D,S} = a + b \Upsilon_{sito}$$

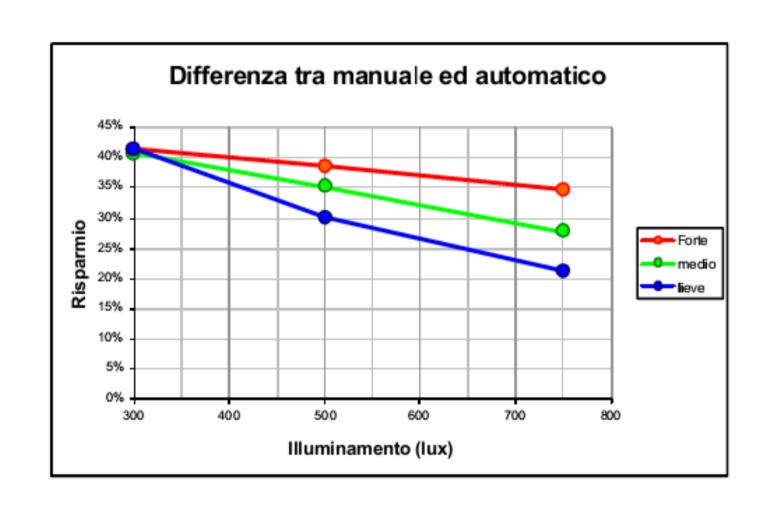
dove: a e b = valori in Tabella 6 in funzione della disponibilità di luce;
 Υ_{sito} = latitudine del sito dell'edificio.

Tabella 5 - Fattore di controllo della luce diurna in funzione del tipo di controllo manuale o automatico e della disponibilità di luce weak (debole), medium (media) e strong (forte) F_{D,C} in funzione della penetrazione di luce naturale Sistema di controllo Debole Forte Media Manuale 0,20 0,30 0,40 Automatico 0,75 0.77 0,85

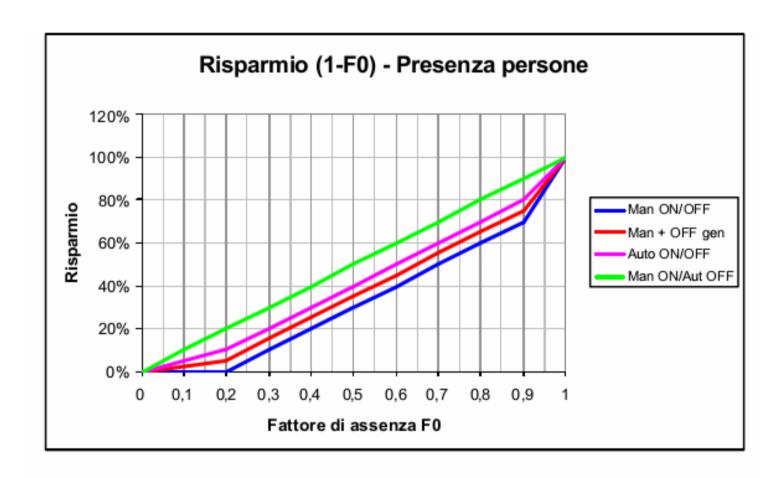
Tabella 6 - Valori di a e b in funzione del valore


Illuminamento medio di progetto	Penetrazione di luce naturale	a	b
[lux]			
	debole	1,2425	-0,0117
300	media	1,3097	-0,0106
	forte	1,2904	-0,0088
	debole	0,9432	-0,0094
500	media	1,2425	-0,0117
	forte	1,3220	-0,011
	debole	0,6692	-0,0067
750	media	1,0054	-0,0098
	forte	1,2812	-0,0121

Fattore di dipendenza dalla luce diurna [FD]

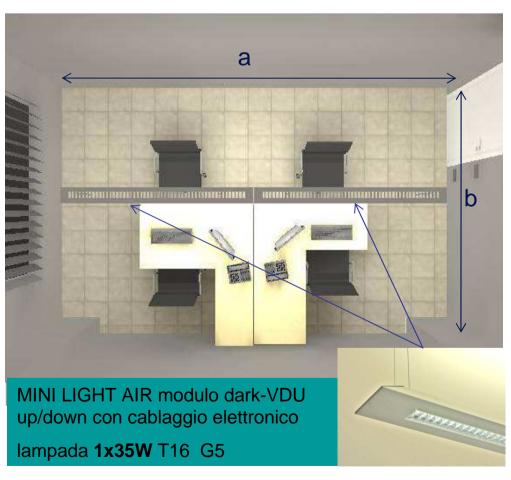

Risparmio energetico con:

- controlli manuali (grafico a)


- controlli automatici (grafico b)

Fattore di dipendenza dalla luce diurna [F_D]

Controllo di presenza [F_o]



Controllo per illuminamento costante F_{C}

$$1-F_c=10\%$$

Qualche esempio numerico

• Esempio numerico per Ufficio Tipo 2 postazioni

Dimensione locale

a: 5m b: 3m

Dimensione finestra

1,2m x 1,4m

Valore illuminamento

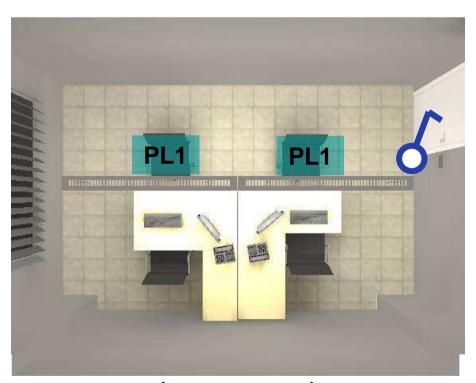
richiesto: 300Lux

$$LENI = \frac{P_D F_C F_O (t_D F_D + t_N)}{1000 \cdot A}$$

Fattore di assenza	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Fattore di occupazione F ₀ per sistemi di controllo che non presentano un sensore di occupazione											
accensione e spegnimento manuale	1,00	1,00	1,00	0,90	0,80	0,70	0,60	0,50	0,40	0,30	0,00
accensione e spegnimento manuale con sistema generale automatico di spegnimento	1,00	0,97	0,95	0,85	0,75	0,65	0,55	0,45	0,35	0,25	0,00
Fattore di occupazione F ₀ per sistemi di controllo che presentano un sensore di occupazione											
accensione automatica e spegnimento in dimming	1,00	0,97	0,95	0,85	0,75	0,65	0,55	0,45	0,35	0,25	0,00
accensione e spegnimento autoatico	1,00	0,95	0,90	0,80	0,70	0,60	0,50	0,50	0,30	0,20	0,00
accensione manuale e spegnimento in dimming	1,00	0,95	0,90	0,80	0,70	0,60	0,50	0,50	0,30	0,20	0,00
accensione manuale e spegnimento automatico	1,00	0,90	0,80	0,70	0,60	0,50	0,50	0,30	0,20	0,10	0,00

Valori del fattore F0 in funzione del tipo di controllo e della percentuale di ore di assenza della persona che occupa il locale

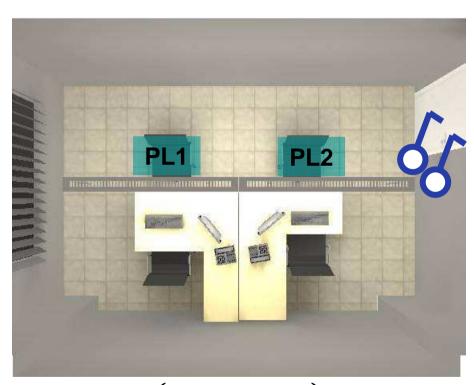
$$LENI = \frac{P_D F_O F_O (t_D F_D + t_N)}{1000 \cdot A}$$


	Latitudine		Sud (39.00°N)			entro (42.00°)	N)	Nord (45.00°N)			
Tipo di controllo	Disponibilità di luce naturale Illuminamento di progetto (lux)	Debole	Media	Forte	Debole	Media	Forte	Debole	Media	Forte	
	300	0,843	0,731	0,621	0,850	0,741	0,632	0,857	0,750	0,642	
Manuale	500	0,885	0,764	0,643	0,890	0,775	0,656	0,896	0,785	0,669	
	750	0,918	0,813	0,676	0,922	0,822	0,691	0,926	0,831	0,705	
	300	0,410	0,310	0,195	0,437	0,334	0,217	0,463	0,359	0,240	
Automatico	500	0,568	0,395	0,241	0,589	0,422	0,269	0,610	0,449	0,297	
	750	0,694	0,520	0,312	0,709	0,543	0,343	0,724	0,565	0,374	

Valori del fattore FD in funzione del tipo di controllo, della latitudine, della disponibilità di luce naturale e dell'illuminamento di progetto

$$LENI = \frac{P_D F_C F_O \left(t_D F_D + t_N \right)}{1000 \cdot A}$$

Caso 0: Unità di comando PL1

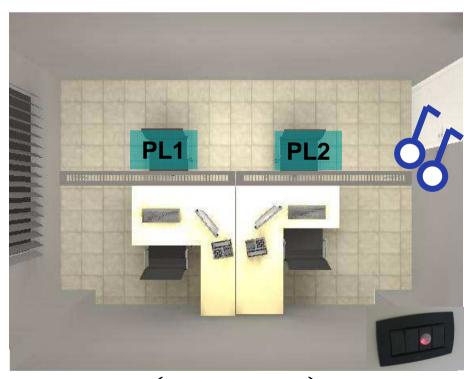


UNICO COMANDO – PL1				
Presence control	MANUA LE			
Flux control	NO			
Α	15 mq			
tD	2.250 h			
tN	250 h			
PD	78 W			
FC	1			
FD	1			
FO	0,9			

LENI =
$$\frac{P_D F_C F_O (t_D F_D + t_N)}{1000 \cdot A}$$

11,7 kWh/m2 anno

Caso 1: Unità di comando PL1 e PL2

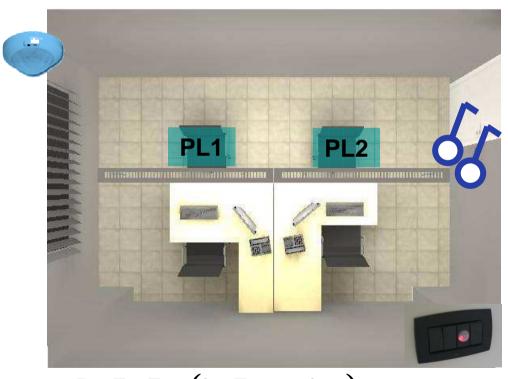

PL2	-1 -1
Presence control	MANUA LE
Flux control	MANUA LE
A	15 mq
tD	2.250 h
tN	250 h
PD	78 W
FC	1
FD	0,7
FO	0,9

DOPPIO COMANDO - PI 1

$$LENI = \frac{P_D F_C F_O \left(t_D F_D + t_N\right)}{1000 \cdot A}$$

8,5 kWh/m2 anno

Caso 2: Doppio comando PL1 e PL2



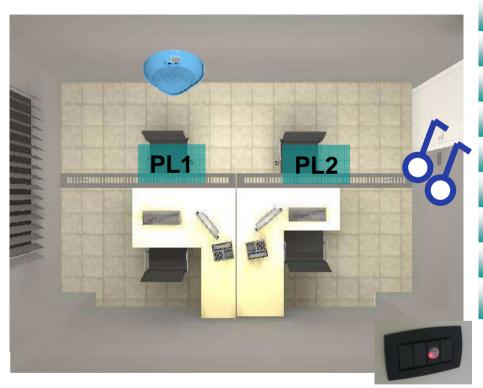
DOPPIO COMANDO – PL1 PL2				
Presence control	AUT			
Flux control	MAN			
Α	15 mq			
tD	2.250 h			
tN	250 h			
PD	78 W			
FC	1			
FD	0,7			
FO	0,7			

$$LENI = \frac{P_D F_C F_O \left(t_D F_D + t_N \right)}{1000 \cdot A}$$

6,6 kWh/m2 anno

Caso 3: Doppio comando PL1 e PL2

DOPPIO COM	IANDO	- PL1
PL2		
_		

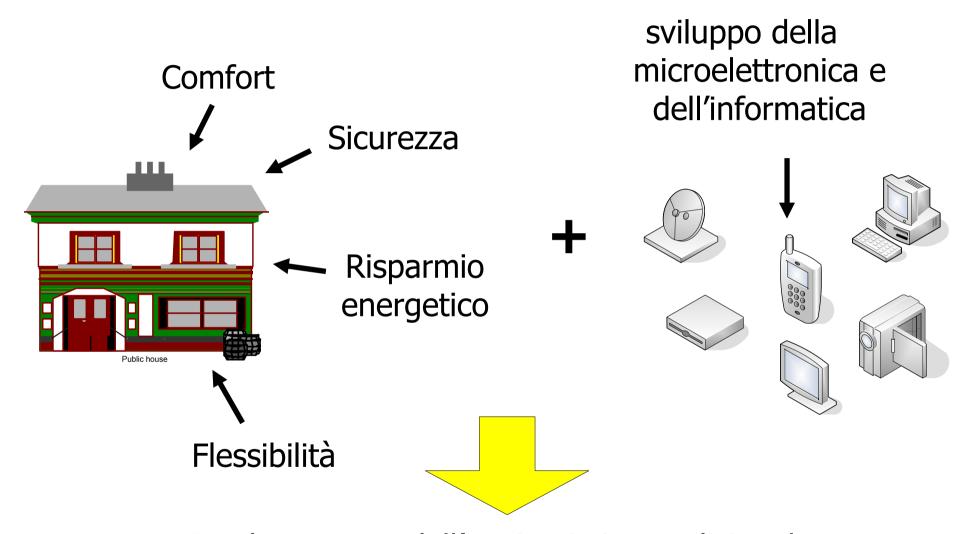

Presence control	AUT
Flux control	AUT
A	15 mq
tD	2.250 h
tN	250 h
PD	78 W
FC	1
FD	0,3
FO	0,7

$$LENI = \frac{P_D F_C F_O \left(t_D F_D + t_N\right)}{1000 \cdot A}$$

3,4 kWh/m2 anno

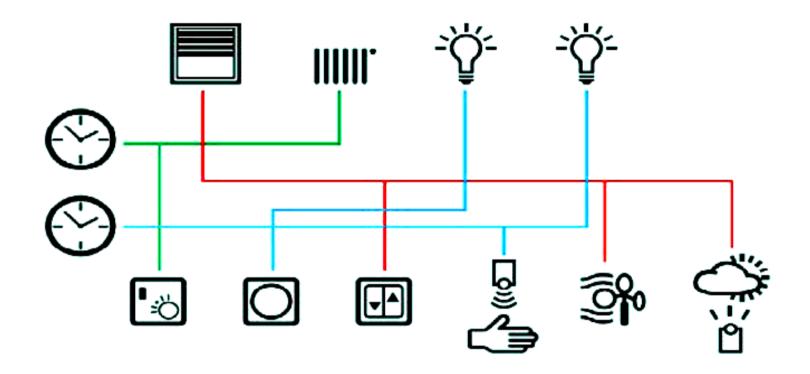
Caso 4: Doppio comando PL1 e PL2

DOPPIO COMANDO -	PL1 PL2
Presence control	AUT
Flux control	AUT
Α	15 mq
tD	2.250 h
tN	250 h
PD	78 W
FC	0,9
FD	0,3
FO	0,7


$$LENI = \frac{P_D F_C F_O \left(t_D F_D + t_N\right)}{1000 \cdot A}$$

3 kWh/m2 anno

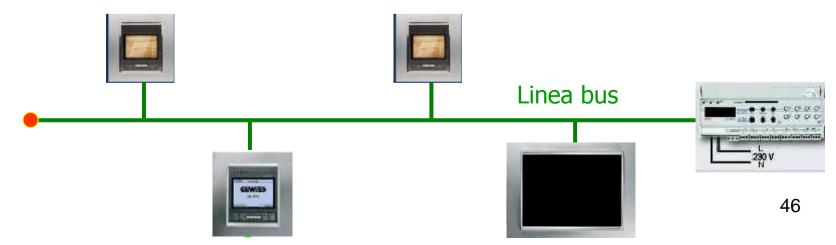
Confronto tra i Casi considerati


		CASO 0	CASO 1	CASO 2	CASO 3	CASO 4
Α	[m2]	15	15	15	15	15
t _n	[h]	250	250	250	250	250
t _d	[h]	2.250	2.250	2.250	2.250	2.250
P _D		78	78	78	78	78
F _C		1	1	1	1	0,9
F _D		1	0,7	0,7	0,3	0,3
Fo		0,9	0,9	0,7	0,7	0,7
LENI	[kWh/m2 anno]	11,7	8,5	6,6	3,4	3,0

Cosa si chiede ad una abitazione?

Inadeguatezza dell'impiantistica tradizionale

COLLEGAMENTI IMPIANTO TRADIZIONALE



LIMITI DELL'IMPIANTO TRADIZIONALE

- Ciascun componente è un'unità autonoma che richiede collegamenti dedicati per l'alimentazione, il comando ed il controllo
- Eventuali estensioni o modifiche dell'impianto richiedono sempre un intervento fisico sui circuiti elettrici
- L'integrazione dei diversi impianti (illuminazione, climatizzazione, antintrusione, ecc) comporta un'elevata complessità circuitale
- Non è possibile l'interfacciamento con l'ambiente esterno (telegestione, telelavoro, telemedicina)

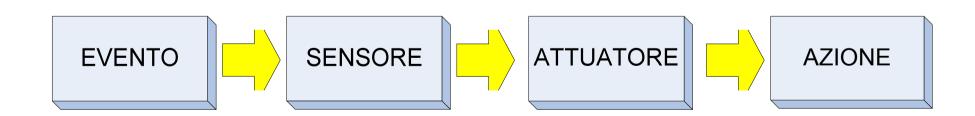
SISTEMI DOMOTICI

- ➤ A partire dagli anni 80 le principali aziende del settore elettrotecnico hanno cominciato a sviluppare i primi sistemi per l'automazione delle abitazioni.
- Cosa s'intende con il termine "bus"?
 - ✓ Si tratta di una linea, alimentata da rete SELV (Safety Exstra Low Voltage), che collega più dispositivi intelligenti, in grado di comunicare tra loro e di svolgere funzioni diverse.

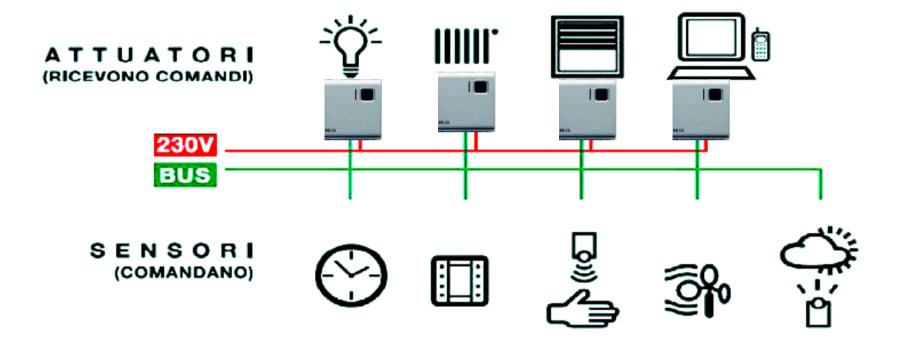
SISTEMI DOMOTICI

I componenti principali

Sensori e dispositivi di comando

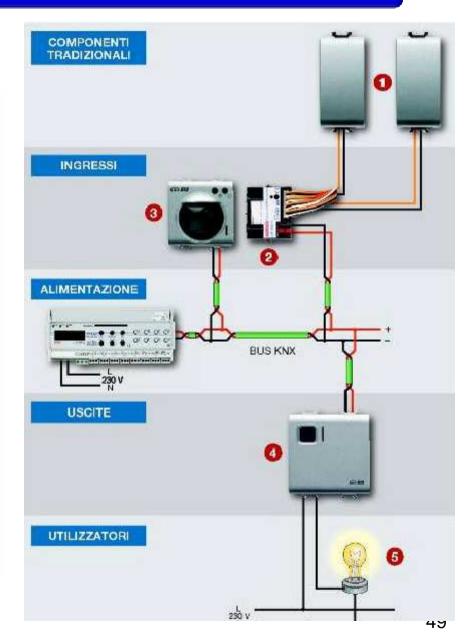


raccolgono informazioni e impartiscono comandi ai dispositivi che realizzano l'interfaccia di potenza con i carichi


Attuatori

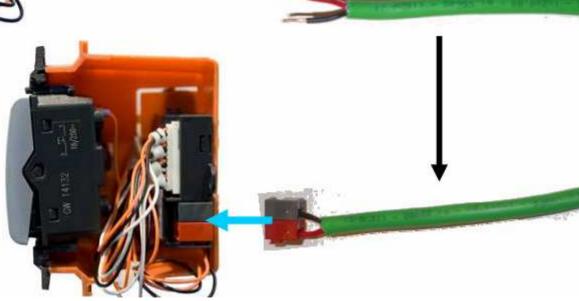
componenti di potenza in grado di inserire e/o disinserire un carico alimentato a tensione di rete (230/400 Vc.a.)

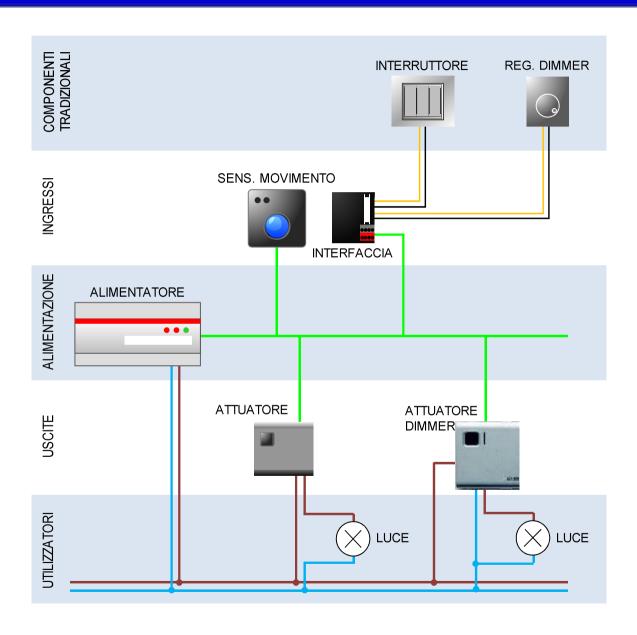
COLLEGAMENTI IMPIANTO DOMOTICO



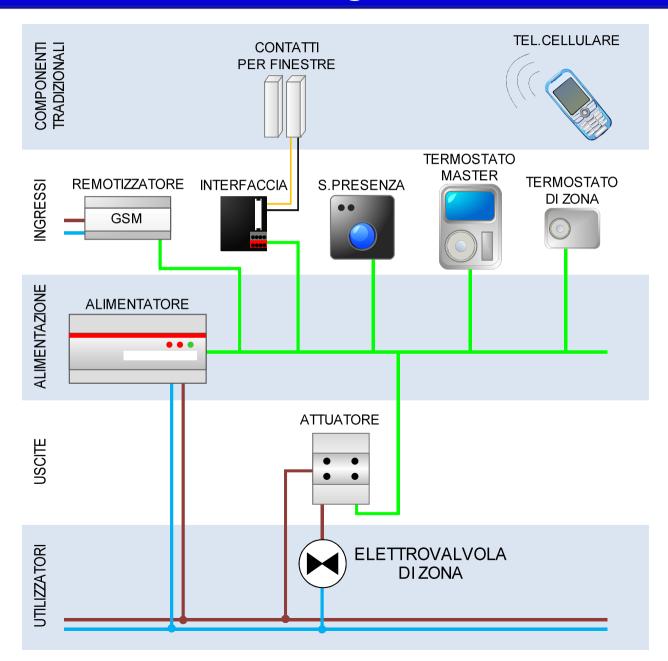
Collegamento dei Comandi

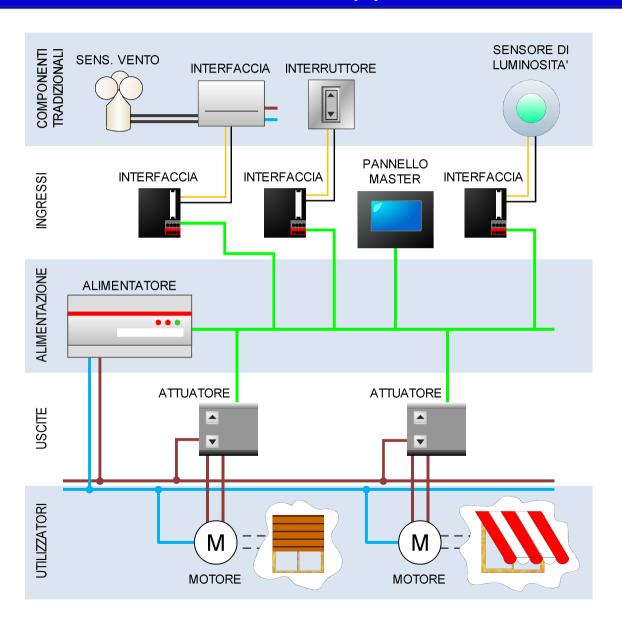
ACCENSIONE LUCI AUTOMATICA

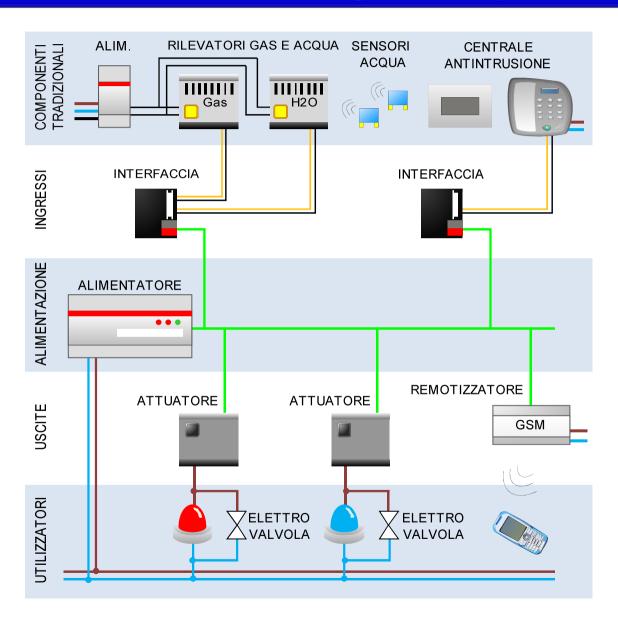

Collegamento dei Comandi


Il cavo BUS collega tutti i dispositivi parallelo.

BUS KNX/EIB


Esempio di collegamento di un punto di comando.


Illuminazione


Termoregolazione

Automatismi Tapparelle

Antifurto e allarme gas e acqua

Remotizzazione Climatizzazione

Elettrodomestici ad alta efficienza energetica

Elettrodomestico	Consumi massimi (apparecchi tradizionali) (kWh/anno)	Consumi minimi (apparecchi ad alta efficienza) (kWh/anno)
Frigorifero	560	320
Congelatore	520	300
Illuminazione	420	84
Lavatrice	570	360
Lavastoviglie	672	504
Forno elettrico	156	78
Forno Microonde	0	39
Televisore funzionamento	130	130
Televisore stand-by	105	0
Videoregistratore funzionamento	55	55
Videoregistratore stand-by	110	0
Computer	160	160
Hi-Fi funzionamento	20	20
Hi-Fi stand-by	60	0
Altri apparecchi	423	265
TOTALE	3961	2315

Elettrodomestici ad alta efficienza energetica

Consumi elettrici di una famiglia tipo (Fonte: Elaborazione dati ENEA).

Adottando gli interventi sopra elencati, il consumo energetico annuo passa da 3.961 kWh a 2.315 kWh con una riduzione del 41,5%.

Il confronto tra i due casi è stato fatto mantenendo costanti le ore di impiego delle apparecchiature elettriche.

In ambito Industriale e Terziario

Trasformatori MT/BT in olio

Sn (kVA)		Perdite a	a vuoto (W	7)	Vcc (%)	
SII (KVA)	D0	CO	В0	A0		
50	145	125	110	90		
100	260	210	180	145		
160	375	300	260	210		
250	530	425	360	300	4	
315	630	520	440	360	4	
400	750	610	520	430		
500	880	720	610	510		
630	1030	860	730	600		
630	940	800	680	560		
800	1150	930	800	650		
1000	1400	1100	940	770		
1250	1750	1350	1150	950	6	
1600	2200	1700	1450	1200		
2000	2700	2100	1800	1450		
2500	3200	2500	2150	1750		

Classi di perdita EN 50464-1 perdite dovute al carico (Un≤24KV)					
Sn (kVA)	Perdite	dovute al car	rico (W)	Vcc (%)	
SII (KVA)	Ck	BK	Ak		
50	1100	875	750		
100	1750	1475	1250		
160	2350	2000	1700		
250	3250	2750	2350	4	
315	3900	3250	2800	4	
400	4600	3850	3250		
500	5500	4600	3900		
630	6500	5400	4600		
630	6750	5600	4800		
800	8400	7000	6000		
1000	10500	9000	7600		
1250	13500	11000	9500	6	
1600	17000	14000	12000		
2000	21000	18000	15000		
2500	26500	22000	18500		

In ambito Industriale e Terziario

Trasformatori MT/BT a secco

Vcc	SN (kVA)	Ak (W)	Bk (W)	A0 (W)	B0 (W)	C0 (W)	D0 (W)
	100	1350	1750	330	360	400	600
	160	1800	2500	450	490	580	870
4%	250	2700	3450	640	660	800	1100
	400	3800	4900	850	970	1100	145
	630	5300	6900	1250	1270	1600	200
	100	1800	2050	280	340	460	
	160	2600	2900	400	480	650	
	250	3400	3800	520	650	880	
	400	4500	5500	750	940	1200	
	630	7100	7600	1100	1250	1650	
6%	800	8000	9400	1300	1500	2000	
Q 70	1000	9000	11000	1550	1800	2300	
	1250	11000	13000	1800	2100	2800	
	1600	13000	16000	2200	2400	3100	
	2000	16000	18000	2600	3000	4000	
	2500	19000	23000	3100	3600	5000	
	3150	22000	28000	3800	4300	6000	

In ambito Industriale e Terziario

Motori elettrici e azionamenti

Misure di risparmio energetico	Risparmi tipici
Descrizione intervento	
Impiego di motori alta efficienza (EEM)	2-8%
Corretto dimensionamento	1-3%
Riparazione motori alta efficienza (EEMR)	0,5-2%
Utilizzo di azionamenti a velocità variabile (VSD)	10-50%
Utilizzo di trasmissioni alta efficienza/riduttori	2-10%
Controllo della qualità della potenza fornita	0,5-3%
Funzionamento e manutenzione del sistema	
Lubrificazione, riparazioni, messa a punto delle macchine	1-5%

Grazie per l'attenzione

Pietro Antonio Scarpino

